V. I. Odinokov

An approximate method of solving the variational equation, constructed on the basis of the principle of virtual variation of the deformed state, with a given equation relating the strains (strain rates) is presented. The stress-strain state is then determined from the solution of the above variational equation. The method is demonstrated on an example of the problem of a strip with a rectangular cross section resting on plane-parallel plates.

1. It is required to determine the velocity and stress fields v_{i} and $\sigma_{i j}, i, j=1,2,3$, from the solution of the variational equation, constructed on the basis of the principle of virtual variation of the displacement rates $\delta \mathrm{v}_{\mathrm{i}}$

$$
\begin{equation*}
\int \sigma_{i j} \delta \xi_{i j} d V-\int X_{i} \delta v_{i} d S=0 \tag{1.1}
\end{equation*}
$$

with a given equation of constraint

$$
\begin{align*}
& \xi=\xi_{i i} \delta_{i j}=0 \tag{1.2}\\
& \xi_{i j}=1 / 2\left(v_{i, j}+v_{i, j}\right)
\end{align*} \quad \delta_{i j}=\left\{\begin{array}{l}
1, i=j \\
0, i \neq j
\end{array}\right.
$$

and the equations of state

$$
\begin{align*}
& \sigma_{i j}=\sigma \delta_{i j}+2 \lambda \xi_{i j} \\
& \lambda=T / H, \quad T=H g(H), \quad H=\left(2 \xi_{i j} \xi_{i j}^{*}\right)^{1 / t}, \\
& \xi_{i j}{ }^{*}=\xi_{i j}-1 /{ }_{3} \xi \delta_{i j} \tag{1.3}
\end{align*}
$$

where σ is the hydrostatic pressure, X_{i} are the components of the surface traction on the surface S, and $v_{i, j}=\partial v_{i} / \partial x_{j}$. In the above formulas summation over repeated indices i, j is assumed.

If Eqs. (1.3) and (1.2) are taken into account and if it is assumed that the boundaries of the deformed region are prescribed, the variational Eq. (1.1) has the form

$$
\begin{equation*}
\left.\delta\left\{\int!\int T d H\right] d V-\int X_{i} v_{i} d S\right\}=0 \tag{1.4}
\end{equation*}
$$

The solution of Eq. (1.4) is the minimum of the functional

$$
\begin{equation*}
J=\int\left[\int T d H\right] d V-\int X_{i} v_{i} d S=\min \tag{1.5}
\end{equation*}
$$

with Eq. (1.2) taken into account.
Let us complete the functional (1.5)

$$
\begin{equation*}
J^{*}=J+\int \sigma \xi d V \tag{1.6}
\end{equation*}
$$

where ∂ is the Lagrange multiplier. Physical considerations indicate that ∂ in Eq. (1.6) represents the hydrostatic pressure [1, 2].

Sverdlovsk. Translated from Zhurnal Prikladnoi Mechaniki i Tekhnicheskoi Fiziki, No. 1, pp. 148152, January-February, 1974. Original article submitted July 10, 1973.

[^0]

Fig. 1

Let us write the first variation of the functional (1.6)

$$
\begin{equation*}
\delta J^{*}=\int\left[2 \lambda \xi_{i j} * \delta \xi_{i j} *+\left(0 \delta \xi_{i j}+\xi_{i j} \delta J\right)\right] d V-\int X_{i} \delta v_{i} d S=0 \tag{1.7}
\end{equation*}
$$

We solve the variational Eq. (1.7) by the Ritz method. The approximate solution is sought in the form

$$
\begin{align*}
& v_{i}=v_{i 0}+\sum_{m=1} c_{i m} v_{i m}, \quad i=1,2,3 \tag{1.8}\\
& \sigma=\sigma_{0}+\sum_{k=1} a_{k} \sigma_{k} \tag{1.9}
\end{align*}
$$

Here $v_{i 0}$ are functions which satisfy the given conditions on the surface $S ; \sigma_{0}$ is a function which satisfies the conditions with respect to $\sigma_{i i}$ on the surface $S ; v_{i m}, m=1,(1), n ; \sigma_{k}, k=1$, (1), and t is a sequence of coordinate functions which satisfy the zero conditions on S; $c_{i m}$ and a_{k} are the Ritz coefficients.

Taking into account Eqs. (1.8) and (1.9), we rewrite Eq. (1.7) in the form

$$
\begin{equation*}
\delta J^{*}=\int\left\{2 \lambda_{\xi_{i j}} *\left(\xi_{i j} *\right), c_{r, m} \delta c_{r m}+\left[\sigma\left(\xi_{i j}\right), c_{p m} \delta c_{p m}\right] \delta_{i j}+\left[\xi_{i j}, a_{k} \delta a_{k}\right] \delta_{i j}\right\} d V-\int X_{i} v_{i, c_{p m}} \delta c_{p m} d S==0, \quad p=1,2,3 \tag{1.10}
\end{equation*}
$$

In Eq. (1.10) the summation is carried out over the indices i, j; as in Eq. (1.2), the following designations are adopted for the partial derivatives $\left(\xi_{\mathrm{ij}}\right), \mathrm{c}_{\mathrm{pm}}=\partial \xi_{\mathrm{ij}} / \partial c_{\mathrm{pm}}$, etc.

Grouping together the terms which accompany the same variations δc_{pm} or δa_{k}, we obtain the equations

$$
\begin{gather*}
\int\left[2 \lambda \xi_{i j} *\left(\xi_{i j} *\right), c_{p m}+\sigma\left(\xi_{i j}\right),_{c_{p m}} \delta_{i j}\right] d V-\int X_{i} \iota_{i, c_{p m}} d S=0 \tag{1.11}\\
\int \xi_{i j} \sigma_{\mu_{k}} \delta_{i j} d V=0 \tag{1.12}
\end{gather*}
$$

It follows from Eq. (1.12) that $\xi=0$.
Let us use $\xi=0$ to simplify Eq. (1.11) and to obtain a system of equations equivalent to Eq. (1.12). To that end, in the equation $\xi=0$ we set coefficients which accompany identical functions equal to one another. Thus, we obtain l equations. We have

$$
\begin{gather*}
\int\left[2 \lambda_{5_{i j}}\left(\xi_{i j}\right), c_{p m}+\sigma\left(\xi_{i j}\right), c_{p m} \delta_{i j}\right] d V-\int x_{i} v_{i, c_{p m}} d S=0 \tag{1.13}\\
{\left[b_{1 m} c_{j m}+b_{2 \alpha} c_{2 \alpha}+b_{33} c_{3 ;}\right] \left\lvert\, \frac{1}{b_{1 m}} v_{1_{m}, 1}=\frac{1}{b_{2 \alpha}} v_{2 \alpha, 2}=\frac{1}{b_{3 \beta}} v_{33,3}=0\right.} \tag{1.14}
\end{gather*}
$$

where $\mathrm{m} \in \mathrm{N}, \alpha \in \mathrm{N}, \beta \in \mathrm{N}$, and $\mathrm{N}=\{0,1,(1), \mathrm{n}\}$.
The number of parameters t of a_{k} must equal $l(\mathrm{t}=l)$.
Solving systems (1.13) and (1.14) jointly, we find all the independent parameters and, consequently, the velocity and stress fields v_{i} and $\sigma, \sigma_{\mathrm{ij}}$.

Should difficulties in integrating the functional arise, a modified Ritz method [3] can be used; furthermore, values of the independent parameters $c_{i m}$ can be found by determining the minimum of the functional (1.5) by means of a numerical method, and then the parameters of a_{k} can be obtained from the solution of the system (1.13). Since the number of parameters c_{pm} exceeds that of parameters a_{k}, the possibility arises of selecting among the parameters $c_{p m}$ those for which differentiation would lead to simpler equations.

The stress field can be obtained without recourse to the equations of equilibrium, which follow from Eq. (1.1), and consequently will be satisfied more accurately the more accurately the velocity field is described. The accuracy of computing normal stresses from strain rates with the use of the equilibrium equations depends to a great extent upon the completeness of description of boundary conditions with respect to shear stresses, which is not always a simple task. Consequently, stress fields calculated by means of equilibrium equations very often display drastic qualitative differences, as compared to the true values.

The procedure presented above gives the values of stresses with the same accuracy with which the velocity was determined.

The above method can be used without considerable changes to determine the stress-strain state from the solution of the variational equation constructed on the principle of virtual variation of the state of stress. In that case, the Lagrange multipliers in the equilibrium equations have the physical meaning of displacement rates [2].
2. Let us apply the above method to the problem of settlement of a strip of rectangular cross section resting on plane-parallel plates with rough surfaces.

We assume the strip to be sufficiently long to justify the plane-problem approach.
Bearing the symmetry in mind, we consider one-quarter of the focus of deformation (Fig. 1).
We assume that the contact surface is acted upon by a constant friction stress τ, which, according to Fig. 1, equals

$$
\begin{equation*}
\tau=-\psi \tau_{S} \tag{2.1}
\end{equation*}
$$

where τ_{S} is the yield point in shear, and ψ is the friction coefficient.
The problem is solved in terms of velocities, considering the moment of deformation. The material being deformed is assumed to be incompressible.

For the case under consideration the variational Eq. (1.1) holds true, as well as the equation of constraint (1.2).

Let us assume that the material being deformed has the properties of a lincarly viscous medium

$$
T=\mu H
$$

The solution of the problem requires satisfaction of the boundary conditions

$$
\begin{equation*}
\left.v_{x}\right|_{x=0}=0,\left.\quad v_{y}\right|_{y=0}=0,\left.\quad v_{y}\right|_{y=h}=-v_{u},\left.\quad s_{x}\right|_{x=b}=0 \tag{2.2}
\end{equation*}
$$

where v_{u} is the velocity of the instrument displacement, and of the condition of symmetry of flow.
To simplify the solution we shall not fulfill certain boundary conditions with respect to $\sigma_{x y}$. Let us write the functions suitable for the velocities v_{X} and v_{y} in the form [4]

$$
\begin{align*}
& v_{x}=c_{0} \frac{x}{b}+c_{1} \frac{x}{b}\left(1-3 \frac{y^{2}}{h^{2}}\right)\left(1-\frac{1}{3} \frac{x^{2}}{b^{2}}\right), \\
& v_{u}=-\left[v_{u} \frac{y}{h}+c_{2} \frac{y}{h}\left(1-\frac{y^{2}}{h^{3}}\right)\left(1-\frac{x^{2}}{b^{2}}\right)\right] \tag{2.3}
\end{align*}
$$

From Eq. (2.3) we find the strain rates

$$
\begin{align*}
\xi_{x} & =c_{0} \frac{1}{b}+c_{1} \frac{1}{b}\left(1-3 \frac{y^{2}}{h^{2}}\right)\left(1-\frac{x^{2}}{b^{2}}\right) \\
\xi_{y} & =-\left[\frac{v_{u}}{h}+\frac{c_{2}}{h}\left(1-3 \frac{y^{2}}{h^{2}}\right)\left(1-\frac{x^{2}}{b^{2}}\right)\right] \tag{2.4}\\
\xi_{x y} & =-\frac{6 c_{1} x y}{b h^{2}}\left(1-\frac{1}{3} \frac{x^{2}}{b^{2}}\right)+\frac{2 c_{2} x y}{h b^{2}}\left(1-\frac{y^{2}}{h^{2}}\right)
\end{align*}
$$

It follows from the condition $\xi=0$ that the system (1.4) must consist of two equations. The series for σ must contain two unknown parameters $a_{\mathrm{k}}, \mathrm{k}=1,2$

$$
\begin{equation*}
\sigma=\sigma_{0} \div a_{1}\left(1-x^{2} / b^{2}\right)+a_{2}\left(1-y^{2} / h^{2}\right)\left(1-x^{2} / b^{2}\right) \tag{2.5}
\end{equation*}
$$

The parameter σ_{0} is found from the condition

$$
\begin{equation*}
\sigma_{0}=-2 \mu b^{-1} c_{0} \tag{2.6}
\end{equation*}
$$

Substituting Eqs. (2.4) and (2.5) into Eq. (1.13) and bearing in mind that $\lambda=\mu$, after differentiation with respect to parameters c_{0}, c_{1}, and c_{2} and integration, we obtain the system of linear equations

Fig. 2

Fig. 3

$$
\begin{gather*}
2 \mu c_{0} h / b+\sigma_{0} h+0.666 h a_{1}+0.444 h a_{2}+0.5 \psi \tau_{s} b=0 \\
2 \mu\left(0.426 h b^{-1} c_{1}+1.29 b h^{-1} c_{1}-0.212 c_{2}\right)+0.142 h a_{2}-0.833 b \psi \tau_{S}=0 \tag{2.7}\\
2 \mu\left(0.426 b h^{-1} c_{2}+0.0507 h b^{-1} c_{2}-0.212 c_{1}\right)-0.142 b a_{2}=0
\end{gather*}
$$

The system of Eqs. (1.14) has the form

$$
\begin{equation*}
c_{0} 1 / b-v_{u} / h=0 ; \quad c_{1} / b-c_{2} / h=0 \tag{2.8}
\end{equation*}
$$

Solving the system (2.5)-(2.8) jointly, we obtain

$$
\begin{gathered}
c_{0}=v_{u} b / h \\
c_{1}=v_{u} 0.416 \psi \frac{b}{h}\left[\frac{2 \mu v_{u}}{h \tau_{S}}\left(0.213 \frac{h}{b}+0.648 \frac{b}{h}+0.0253 \frac{h^{2}}{b^{3}}\right)\right]^{-1} \\
c_{2}=c_{1} h / b \\
a_{1}=\tau_{S}\left[\frac{2 \mu c_{1}}{h \tau_{S}}\left(\frac{h}{b}+6.04 \frac{b}{h}\right)-4.65 \psi \frac{b}{h}\right] \\
a_{2}=\tau_{S}\left[5.86 \psi \frac{b}{h}-\frac{2 \mu c_{1}}{\tau_{S} h}\left(1.51 \frac{h}{b}+9.08 \frac{b}{h}\right)\right]
\end{gathered}
$$

Figures 2 and 3 show some diagrams of distribution of stresses and specific pressures P in the focus of deformation for $\psi=0.5,2 \mu \mathrm{v}_{\mathbf{u}} / \mathrm{h} \tau_{\mathbf{S}}=1$.

Thus, Fig. 2 gives the diagrams of distribution of σ_{x} / τ_{S} along the height of the focus of deformation in the cross sections $x / b=0,0.25,0.5$, and 0.75 . Numbers $1,2,3$, and 4 designate the curves which correspond to the cross sections x / b listed above for $b / h=0.5$. Numbers $5,6,7$, and 8 designate the curves which correspond to the same cross sections x / b for $b / h=2$. Figure 3 gives the diagrams of specific pressures $\mathrm{P} / \tau_{\mathrm{S}}$ on the contact surface between the metal and the instrument. Numbers $1,2,3,4$, and 5 designate the curves of specific pressure for the corresponding criteria of $b / h(b / h=1.0,1.5,2.0,2.5$, and 3.0).

The above diagrams show qualitative agreement with existing solutions and experimental data on the settlement of incompressible materials, despite the nonfulfillment of certain boundary conditions on $\sigma_{x y}$.

LITERATURE CITED

1. A. A. Markov, "On variational principles in the theory of plasticity," Prikl. Matem. i Mekhan., 11, No. 3 (1947).
2. V. L. Kolmogorov, "The principle of virtual variations of the states of stress and strain," Inzh. Zh. MTT, No. 2 (1967).
3. L. M. Kachanov, "On the variational methods of solution of problems in the theory of plasticity," Prikl. Matem. i Mekhan., 23, No. 3 (1959).
4. I. Ya. Tarnovskii, A. A. Pozdeev, O. A. Ganago, V. L. Kolmogorov, V. N. Trubin, R. A. Vaisburd, and V. I. Tarnovskii, Theory of Treatment of Metals by Pressure [in Russian], Gostekhizdat, Moscow (1963).

[^0]: © 1975 Plenum Publishing Corporation, 227 West 17 th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

