ON AN APPROXIMATE METHOD OF SOLUTION
OF PROBLEMS IN PLASTICITY

V. I. Odinokov UDC 539.374

An approximate method of solving the variational equation, constructed on the basis of the
principle of virtual variation of the deformed state, with a given equation relating the strains
(strain rates) is presented. The stress-strain state is then determined from the solution of
the above variational equation. The method is demonstrated on an example of the problem of
a strip with a rectangular cross section resting on plane-parallel plates.

1. It is required to determine the velocity and stress fields vij and 0ij 1, j=1,2, 3, from the solution
of the variational equation, constructed on the basis of the principle of virtual variation of the displacement
rates 6vj

(oudt,aV — { XdvdS =0 .1
with a given equation of constraint
E=Epy=0 ._{1,,-:,-
& = Yy (i + ) U0, i 5 {1.2)

and the equations of state

0;; = 08y + 2A%y;
A=T/H, T=Hg(H), H=(25*E),

1.3
Ei* = &y — Y3Eby -3

where o is the hydrostatic pressure, Xj are the components of the surface traction on the surface S, and
vi,j = 8vi/8x]'. In the above formulas summation over repeated indices i, j is assumed.

If Egs. (1.3) and (1.2) are taken into account and if it is assumed that the boundaries of the deformed
region are prescribed, the variational Eq. (1.1) has the form

8 (§1l TdHAV — § Xy v, dS} = 0 (1.4)
The solution of Eq. (1.4) is the minimum of the functional
J = (1§ TdH)AV — § XwdS = min (1.5)
with Eq. (1.2) taken into account.
Let us complete the functional (1.5)
J* = J + [ otav (1.6)

where 9 is the Lagrange multiplier. Physical considerations indicate that 8 in Eq. (1.6) represents the hy-
drostatic pressure {1, 2].
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A 0 Let us write the first variation of the functional (1.6)

8% = {12082, - (385 + £s09)1dV — { X,ovidS = 0

(1.7)
h
We solve the variational Eq. (1.7) by the Ritz method. The approximate so-
b lution is sought in the form
—1 X
]
Fig- 1 V; == Ui + mz—__l CimUimy, t=1,2, 3 (1.8)

6 = Gy + a3
Gg 2—.}1 &Sk (1.9)

Here vj, are functions which satisfy the given conditions on the surface S; o; is a function which satis-
fies the conditions with respect to ojj on the surface S; vimm, m =1, (1), n; ok, k =1, (1), and t is @ scquence
of coordinate functions which satisfy the zero conditions on S; ¢cjy, and ay are the Ritz coefficients.

Taking into account Eqgs. (1.8) and (1.9), we rewrite Eq. (1.7) in the form

8% = { {2h5% (5%), ¢, i &[5 (B, ey O0om] 835 & (5055, 0,006) 8} AV — { Xip, 8,ndS =20, p=1,2.3 (1.19)

i5Com

In Eg. (1.10) the summation is carried out over the indices i, j; as in Eq. (1.2), the following designa-
tions are adopted for the partial derivatives (¢j), cpm = aﬁj/E)Cpm, etc.

Grouping together the terms which accompany the same variations 6cpm or day, we obtain the equa-
tions

(2VE* (€5 ey + 3 Eiidonnds] AV — § Xt dS = 0 (1.11)
m P o rm

Séijoﬂk 8;dV =0 1.12)
1t follows from Eg. (1.12) that ¢ = 0.

Let us use ¢ =0 to simplify Eq. (1.11) and to obtain a system of equations equivalent to Eq. (1.12). To
that end, in the equation £ =0 we set coefficients which accompany identical functions equal to one another.
Thus, we obtain / equations. We have

$ 1225 G + 3 Eithogm 01 AV — § Xty 48 = 0 (1.13)
1b1mCim -+ baalaa + bs:JC | =0
" * fm ”1nu.l=-,,:T”21,2: ‘%“33.3 (1'14)

whereme N, « ¢ N, g N, and N = {0, 1, (1), n}.
The number of parameters t of ay must equal I{t =1).

Solving systems (1.13) and (1.14) jointly, we find all the independent parameters and, consequently,
the velocity and stress fields vj and g, 0j;. '

Should difficulties in integrating the functional arise, a modified Ritz method (3] can be used; further-
more, values of the independent parameters cj, can be found by determining the minimum of the functional
(1.5) by means of a numerical method, and then the parameters of ak can be obtained from the solution of
the system (1.13). Since the number of parameters ¢, exceeds that of parameters ay, the possibility
arises of selecting among the parameters cpm those for which differentiation would lead to simpler equa-
tions. '

The stress field can be obtained without recourse to the equations of equilibrium, which follow from
Eq. (1.1), and consequently will be satisfied more accurately the more accurately the velocity field is de-
scribed. The accuracy of computing normal stresses from strain rates with the use of the equilibrium
equations depends to a great extent upon the completeness of description of boundary conditions with respect
to shear stresses, which is not always a simple task. Consequently, stress fields calculated by means of
equilibrium equations very often display drastic qualitative differences, as compared to the true values.
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The procedure pregented above gives the values of stresses with the same accuracy with which the velocity
was determined.

The above method can be used without considerable changes to determine the stress-strain state from
the solution of the variational equation constructed on the principle of virtual variation of the state of stress.
In that case, the Lagrange multipliers in the equilibrium equations have the physical meaning of displace~
ment rates [2].

2. Let us apply the above method to the problem of settlement of a strip of rectangular cross section
resting on plane-parallel plates with rough surfaces.

We assume the strip to be sufficiently long to justify the plane-problem approach.
Bearing the symmetry in mind, we consider one-quarter of the focus of deformation (Fig. 1).

We assume that the contact surface is acted upon by a constant friction stress 7, which, according to
Fig. 1, equals

T = —-‘lp‘l.’s (2. 1)

where 7gis theyield point in shear, and ¢ is the friction coefficient.

The problem is solved in terms of velocities, considering the moment of deformation. The material
being deformed is assumed to be incompressible.

For the case under consideration the variational Eq. (1.1) holds true, as well as the equation of con-
straint (1.2).

Let us assume that the material being deformed has the properties of a linearly viscous medium
T —=uH
The solution of the problem requires satisfaction of the boundary conditions

Vs =0, v, =0, v = —v,, I =0 (2.2)
x=0 y=0 y=h x=b

where vy, is the velocity of the instrument displacement, and of the condition of symmetry of flow.

To simplify the solution we shall not fulfill certain boundary conditions with respect to oxy. Let us
write the functions suitable for the velocities vx and vy in the form [4)

z 2 { 22
o= g+ e - 1 -3 ) [t~ 5).

3 \ (2.3
== [ e (1= ) (1 =55 !
From Eq. (2.3) we find the strain rates

gx:co%-}—cl—z—(i——3i)(1——%),
oL 2Bl )

6erxy z? 2633:_/ y2
gzv='— bht (1—'—" )+ hbe ( _7?)

It follows from the condition £ =0 that the system (1.4) must consist of two equations. The series for
¢ must contain two unknown parameters ag, k =1, 2

0=0,+a(1—22/0®+a (1 —y2 /81 — 22/ b?) (2.5)
The parameter o, is found from the condition

0y = —2pb~le, (2.6)

Substituting Eqgs. (2.4) and (2.5) into Eq. (1.13) and bearing in mind that A = j, after differentiation
with respect to parameters cg, Cy, and c, and integration, we obtain the system of linear equations
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Fig. 2

2ucoh / b 4 a4k + 0.666ha, + 0.444ka, + 0.5¢1sb = 0

2p (0.426kb71c, + 1.29bh1c, — 0.212¢,) + 0.142ha, — 0.8330pts =0 (2,7)
2p (0.426bh1¢, 4 0.0507hb1c, — 0.212¢)) — 0.142ba, = 0

The system of Egs. (1.14) has the form

P/t 5\‘
2.5 .

= = (2.8)
T~
73— Solving the system (2.5)-(2.8) jointly, we obtain

7 \ i
FQ%éE . co=vb/h

>

ol /b—vy /=0, ¢,/b—cy,/h=20

b [ 2w h b A2 \T-1
: = 0, 0.6069 L[ 2% [0 993 2 b 002532
ro L TR o= 0,04169 - [ 57 (0213 - + 0.648 - + 0.0253 )]
z/b c3 = cshfb
i _ Zp.cl ,[' h b b
Fig. 3 = Ts[ o [ +6.04 ) — 46501,
b

2pcy =4 R b
— 2 (1515 +9.087 )]

Figures 2 and 3 show some diagrams of distribution of stresses and specific pressures P in the focus
of deformation for y = 0.5, 2puv,/hTg=1,

Thus, Fig. 2 gives the diagrams of distribution of ox/'rS along the height of the focus of deformation in
the cross sections x/b = 0, 0.25, 0.5, and 0.75. Numbers 1, 2, 3, and 4 designate the curves which corre-
spond to the cross sections x/b listed above for b/h=0.5. Numbers 5, 6, 7, and 8 designate the curves which
correspond to the same cross sections x/b for b/h = 2. Figure 3 gives the diagrams of gpecific pressures
P/ Tgon the contact surface between the metal and the instrument. Numbers 1, 2, 3, 4, and 5 designate the
curves of specific pressure for the corresponding criteria of b/h (b/h=1.0, 1.5, 2.0, 2.5, and 3.0).

The above diagrams show qualitative agreement with existing solutions and experimental data on the
settlement of incompressible materials, despite the nonfulfillment of certain boundary conditions on Uxy
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