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An approximate  method of solving the variat ional  equation, const ructed  on the basis  of the 
principle of virtual  variat ion of the deformed state, with a given equation relating the s t ra ins  
(strain rates)  is presented.  The s t r e s s - s t r a i n  state is then determined f rom the solution of 
the above variat ional  equation. The method is demonstrated on an example of the problem of 
a s t r ip  with a rec tangular  c r o s s  section rest ing on plane-para l le l  plates. 

1. It is required to determine the velocity and s t r e s s  fields vi and aij, i, j = 1, 2, 3, f rom the solution 
of the variat ional  equation, const ructed  on the basis  of the principle of virtual variat ion of the displacement  
ra tes  5v i 

with a given equation of cons t ra in t  

and the equations of state 

I ~06~fl v - -  I X~Sv,dS = 0 (1.1) 

=5k~=0 {t, i= /  
~,j : xL, (v~5 a_ vt,j) 6~J = 0, i :/=] (1.2) 

)~ = T / H,  T = Hg (H), 

~ *  = ~U - -  x/3['StJ 
H : (2[,j*~j*)'/,, (1.3) 

where cr is the hydrostat ic  p r e s su re ,  Xi a re  the components of the sur face  t ract ion on the surface  S, and 
vi,j = 0vi/0xj. In the above formulas  summation over  repeated indices i, j is assumed.  

If Eqs. (1.3) and (1.2) a re  taken into account and if it is assumed that the boundaries of the deformed 
region a re  prescr ibed ,  the variat ional  Eq. (1.1) has the form 

6 {~[~ r d H l d V  - -  ~ X ,  v, dS} --: 0 (1.4) 

The solution of Eq. (1.4) is the minimum of the functional 

] = ~. [S T d H l d V  -- ~ X,vr = min 

with Eq. (1.2) taken into account. 

Let us complete the functional (1.5) 

J* = J + ~ o~dV 

where a is the Lagrange multiplier.  
drostat ic  p r e s s u r e  [1, 2]. 

(1.5) 

(1.6) 

Physical considerations indicate that 0 in Eq. (1.6) represents the hy- 
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L e t  us  w r i t e  the  f i r s t  v a r i a t i o n  o[' the  func t iona l  (1.6) 

(1.7) 

W e  s o l v e  the  v a r i a t i o n a l  Eq. (1.7) by the  Ri tz  method .  T h e  a p p r o x i m a t e  s o -  
lu t ion  i s  sought  in the  f o r m  

// 

vl : :  vlo + ~ ci,~v~,,, ~ = l ,  2, 3 (1.8) 
F ig .  1 m=z 

~I (1.9) 

H e r e  vi0 a r e  func t ions  which  s a t i s f y  t he  g iven  c o n d i t i o n s  on the  s u r f a c e  S; e0 i s  a funct ion  which  s a t i s -  
f i e s  the cond i t ions  with r e s p e c t  to crii on the  s u r f a c e  S; Vim, m = 1, (1), n; ok,  k = 1, (1), and t i s  a s e q u e n c e  
of c o o r d i n a t e  func t ions  which  s a t i s f y  t he  z e r o  c o n d i t i o n s  on S; Cim and a k a r e  the  Ri tz  c o e f f i c i e n t s .  

Tak ing  into accoun t  Eqs .  (1.8) and (1.9), wc  r e w r i t e  Eq. (1.7) in the  f o r m  

5d* =: f(2X~)*(~j*),,r, 6cr~ + [o(~j),,r 6cp~16j ~,- [~0~,~6a~15~} dV - - !  X~v~,:r,,,3cr,,~dS : :  0, p = 1 ,2 ,3  (1.10) 

In Eq. (1.10) t he  s u m m a t i o n  i s  c a r r i e d  out  o v e r  the i n d i c e s  i,  j; a s  in Eq. (1.2), the fo l lowing  d e s i g n a -  
t ions  a r e  adop ted  f o r  the  p a r t i a l  d e r i v a t i v e s  (~ij), Cpm = 0~ij/~Cpm, etc.  

Group ing  t o g e t h e r  the  t e r m s  which  a c c o m p a n y  the s a m e  v a r i a t i o n s  6Cpm or  5a k, w e  ob ta in  the  e q u a -  

t ions  

I [2k,~i~* (~j*),:~,,~ q- ,~ (~),r dV --  I Xivi,er,~ dS = 0 (1.11) 

I~P~k 6~fiV = 0 (1.12) 

It follows from Eq. (1.12) that ~ = 0. 

Let us use ~ =0 to simplify Eq. (1.11) and to obtain a system of equations cquivalcnt to Eq. (1.12). To 
that end, in the equation ~ =0 we set coefficients which accompany identical functions equal to one another. 
Thus, we obtain l equations. We have 

I t2k++j (~),+~ + .~ (+u),+~ ,5+j] dV --  t X,v+,c,,,,dS = 0 (1.13) 

Iblmc1,~ + b,,,c2~ + I 1 , , = 0 (1.14) 

where m c  N, c ~  N, fl~N, and N ={0, i, (i), n). 

The number of parameters t of a k must equal/(t = l). 

Solving systems (1.13) and (1.14) jointly, we find all the independent parameters and, consequently, 
the velocity and stress fields v i and a, ~ij" 

Should difficulties in integrating the functional arise, a modified Ritz method [3] can be used; further- 
more, values of the independent parameters Cim can be found by determining the minimum of the functional 
(1.5) by means of a numerical method, and then the parameters of ak can be obtained from the solution of 
the system (1.13). Since the number of parameters epm exceeds that of parameters ak, the possibility 
arises of selecting among the parameters Cpm those for which differentiation would lead to simpler equa- 
tions. 

The  s t r e s s  f i e ld  can  be ob ta ined  wi thout  r e c o u r s e  to the  equa t ions  of e q u i l i b r i u m ,  which fol low f r o m  
Eq. (1.1), and c o n s e q u e n t l y  w i l l  be  s a t i s f i e d  m o r e  a c c u r a t e l y  the  m o r e  a c c u r a t e l y  the  v e l o c i t y  f i e ld  i s  d e -  
s c r i b e d .  The  a c c u r a c y  of c o m p u t i n g  n o r m a l  s t r e s s e s  f r o m  s t r a i n  r a t e s  with the  u s e  of the  e q u i l i b r i u m  
equa t ions  d e p e n d s  to a g r e a t  ex ten t  upon the  c o m p l e t e n e s s  of d e s c r i p t i o n  of b o u n d a r y  c o n d i t i o n s  with r e s p e c t  
to s h e a r  s t r e s s e s ,  which i s  not a l w a y s  a s i m p l e  t a s k .  Conse que n t l y ,  s t r e s s  f i e l d s  c a l c u l a t e d  by m e a n s  of 
e q u i l i b r i u m  equa t ions  v e r y  of ten  d i s p l a y  d r a s t i c  q u a l i t a t i v e  d i f f e r e n c e s ,  a s  c o m p a r e d  to the  t r u e  va l ue s .  
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The procedure  presented above gives the values of s t r e s ses  with the same  accuracy  with which the velocity 
was determined.  

The above method can be used without considerable  changes to determine the s t r e s s - s t r a i n  state f rom 
the solution of the variat ional  equation const ructed  on the principle of virtual variat ion of the state of s t ress .  
In that case ,  the Lagrange mult ipl iers  in the equilibrium equations have the physical  meaning of d isplace-  
ment ra tes  [2]. 

2. Let us apply the above method to the problem of set t lement of a s tr ip of rec tangular  c r o s s  section 
rest ing on plane-para l le l  plates with rough surfaces .  

We assume the str ip to be sufficiently long to justify the plane-problem approach. 

Bearing the symmet ry  in mind, we cons ider  one-quar te r  of the focus of deformation (Fig. 1). 

We assume that the contact  surface  is acted upon by a constant friction s t r ess  T, which, according to 
Fig. 1, equals 

= - - ~ s  (2.1) 

where T s is theyield point in shear ,  and r is the frict ion coefficient. 

The problem is solved in t e rms  of velocit ies,  consider ing the moment of deformation.  The material  
being deformed is assumed to be incompressible .  

For  the ease  under considerat ion the variat ional  Eq. (1.1) holds true, as well as the equation of con-  
s t raint  (1.2). 

Let us a ssume that the mater ia l  being deformed has the proper t ies  of a l inearly viscous medium 

T = ~H 

The solution of the problem requ i res  satisfaction of the boundary conditions 

vx~=o----0, vvu=0 - 0 '  vu~=h=--v~'  ~xx=b=O (2.2) 

where v u is the velocity of the inst rument  displacement,  and of the condition of symmet ry  of flow. 

To simplify the solution we shall not fulfill cer ta in  boundary conditions with respec t  to ~xy. Let us 
wri te  the functions suitable for  the velocit ies Vx and Vy in the form [4] 

V x = C 0 ~ 4 - C l ~  1 - - v  /,2] I 3 b ~ ' 
(2.3) 

Py ~ - -  LV u 
Y )] - 

F r o m  Eq. (2.3) we find the s train ra tes  

~ = co--g-+ c, 

It follows f rom the condition ~ =0 that the sys tem (1.4) must  consist  of two equations. The ser ies  for 
must contain two unknown pa rame te r s  ak, k = 1, 2 

(~= (%-~- a l ( l - x  ~/b  2) + a 2 ( l - - y ~ / h  2)(t - - x  2 /b  2) (2.5) 

The p a r a m e t e r  a 0 is found from the condition 

% = --2~b-u (2.6) 

Substituting Eqs. (2.4) and (2.5) into Eq. (1.13) and bearing in mind that X = #, af ter  differentiation 
with respec t  to pa rame te r s  Co, c 1, and c~ and integration, we obtain the sys tem of l inear equations 

122 



-1.25 -1.oo -0. 75 

1.00 

~75 

g.sg 

-o .5  -0.  25 o o .z5  
ax/rs 

Fig. 2 

p/r  s 

Z.5 

2 3  

Z g 
g 

[ 
g. 25 

I 
g I 
~=I i 

0. 5 0. 75 / 
x/tJ 

Fig.  3 

2~oh / b ~2 o0h + 0.666ha~ + 0.444ha,. + 0.5~sb = 0 
2~t (0.426hb-lcl -[- t. 29bh-lcx - -  0.2i2c~) + 0A42ha 2 - -  0.833b~s = 0  

2~ (0.426bh-lcz + O.0507hb-lcs - -  0.2t2cl) --  0.i42ba~ = 0 

The sy s t em of Eqs. (.1.14) has  the f o r m  

c o i / b - - v , / h = O ,  c l / b - - c 2 / h =  0 

Solving the s y s t e m  (2.5)-(2.8) jointly, we obtain 

c o = v . b  / h 

ct = v~ 0.416~p 0.2i3 %- + 0.648 -~- 

c~ = cth]b 

= al "CS[ hv:$ I b -~ 

[ hb 2~,~d~ (t.5i-~- -.{- 9.08~-)] as = Zst5.86~ 

(2.7) 

(2.8) 

F igu re s  2 and 3 show some d i a g r a m s  of dis t r ibut ion of s t r e s s e s  and specif ic p r e s s u r e s  P in the focus 
of deformat ion  for  ~ -- 0.5, 2/~vu/hl"s= 1. 

Thus, Fig. 2 gives  the d i a g r a m s  of dis t r ibut ion of ~x/T S along the height of the focus of deformat ion  in 
the c r o s s  sec t ions  x /b  = 0, 0.25, 0.5, and 0.75. Number s  1, 2, 3, and 4 des ignate  the cu rve s  which c o r r e -  
spond to the c r o s s  sec t ions  x / b  l i s ted above for  b / h =  0.5. Numbers  5, 6, 7, and 8 des ignate  the cu rve s  which 
co r re spond  to the s a m e  c r o s s  sec t ions  x /b  for  b/h  = 2. F igure  3 gives the d i a g r a m s  of specif ic p r e s s u r e s  
P / T s O n  the contact  su r f ace  between the meta l  and the ins t rument .  Numbers  1, 2, 3, 4, and 5 des ignate  the 
cu rve s  of specif ic p r e s s u r c  for  the co r respond ing  c r i t e r i a  of b /h  (b/h= 1.0, 1.5, 2.0, 2.5, and 3.0). 

The above d i a g r a m s  show quali tat ive a g r e e m e n t  with existing solutions and exper imenta l  data on the 
se t t l ement  of i n c o m p r e s s i b l e  m a t e r i a l s ,  despi te  the nonfulfi l lment of ce r t a in  boundary condit ions on (rxy. 
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